
Towards Operation POG
for VDM

Nick Battle and Peter Gorm Larsen

Proof Obligations (within functions)

func(key:K, table:T) ==

table(key)
key in set dom table

● Functions are simple expression trees
● Unambiguous paths to POs
● General form of POs is…

for all possible valid args...
 context stack of path...
 conditions leading to...
 the base obligation

e.g.

forall key:K, table:T &
 pre_func(key, table) =>
 condition 1 =>
 condition 2 =>
 key in set dom table

Condition 1

Condition 2

pre key... table...

Proof Obligations (within operations)

op(key:K) ==

table(key)
key in set dom table

● Operations have control flow graphs
● Can have alternative paths to POs
● Can have loops and exceptions
● Can update state, including "dcl" state
● Can call operations (inc. other modules)
● Can have multiple return points

for all possible args
 for all possible states
 for all possible paths
 context stack of conditions...
 and loops and exceptions...
 and state changes...
 and operation calls leading to...
 the base obligation

state Sigma of
 table : T
end

Proof Obligations (within operations)
● Current operation POG gives the base obligation in explicit operations

○ Like "key in set dom table" with no path context
○ Always "Unchecked" (ignored)
○ VDM method uses operation decomposition and data reification

● New operation POG is better, but still incomplete
○ Solved the easy cases, harder ones remain…
○ But VDM-SL "Unchecked" POs down from 21% to 9.6%

● Turns possible paths through the graph into PO context expressions
○ Paths reflect possible histories of updated variables

● Top level "forall" adds mk_Sigma(v1, v2, ...):Sigma for state
○ Means "for any combination of arguments and module state…"

● State ":=" assignments create a "let" context to update the value
○ New values hide the top level "forall" values

Proof Obligations (assignments)

state Sigma of
 sv : nat
end

op(z:nat) r:real ==
 if z > 10 then
 (
 sv := z;
 sv := sv * 2;
 return 1/sv -- PO#1
)
 else
 ...
pre z > sv;

Proof Obligation 1: (Unproved)
(forall z:nat, mk_Sigma(sv):Sigma &
 pre_op(z, mk_Sigma(sv)) =>
 ((z > 10) =>
 (let sv : nat = z in
 (let sv : nat = (sv * 2) in
 sv <> 0))))

● State updates add "let" contexts to the PO
● Update values hide earlier values

Proof Obligations (complex assignments)
● More complex assignments modify values in the "let"
● Sequence and map designators use "++", field designators use "mu"

state Sigma of
 sv : seq of R
end

types
 R ::
 size : real;

op(z:nat) r:real ==
(
 sv(1).size := 456; -- PO #1
 return 1/sv(1).size -- PO #2,3
);

Proof Obligation 1: (Unproved)
(forall z:nat, mk_Sigma(sv):Sigma &
 1 in set inds sv)

Proof Obligation 2: (Unproved)
(forall z:nat, mk_Sigma(sv):Sigma &
 (let sv : seq of R = (sv ++
 {1 |-> mu(sv(1), size |-> 456)}) in

1 in set inds sv))

Proof Obligation 3: (Unproved)
(forall z:nat, mk_Sigma(sv):Sigma &
 (let sv : seq of R = (sv ++
 {1 |-> mu(sv(1), size |-> 456)}) in

(sv(1).size) <> 0))

Proof Obligations (local dcl state)
● State can be local, using "dcl" statements in a block
● Blocks can nest, so state has multiple scopes, including module scope
● Local state restricted to its block, but effects can escape…

state Sigma of
 sv : nat
end

op(z:nat) r:real ==
(
 dcl a:nat := 0;
 a := a + 1;

 (dcl b:nat := a + 1;
 sv := b); <---- Updates state!

 (dcl c:nat := a + 2;
 c := c + 1);

 return 1/sv -- PO#1 depends on a, b but not c
);

Proof Obligation 1: (Unproved)
(forall z:nat, mk_Sigma(sv):Sigma &
 (let a : nat = 0 in
 (let a : nat = (a + 1) in
 (let b : nat = (a + 1) in <--- NOTE
 (let sv : real = b in
 sv <> 0)))))

Proof Obligations (alternative paths)
● Alternative paths to reach a PO generate multiple POs
● Path expansion is typically small (we hope!)

state Sigma of
 sv : real
end

op(a:nat) r:real ==
(
 if a > 0 then
 || (
 sv := 1,
 sv := sv * 2
)
 else
 sv := 999;

 return 1/sv -- PO#s 1,2,3
);

Proof Obligation 1: (Unproved)
(forall a:nat, mk_Sigma(sv):Sigma &
 ((a > 0) =>
 (let sv : real = 1 in
 (let sv : real = (sv * 2) in
 sv <> 0))))

Proof Obligation 2: (Unproved)
(forall a:nat, mk_Sigma(sv):Sigma &
 ((a > 0) =>
 (let sv : real = (sv * 2) in
 (let sv : real = 1 in
 sv <> 0))))

Proof Obligation 3: (Unproved)
(forall a:nat, mk_Sigma(sv):Sigma &
 (not (a > 0) =>
 (let sv : real = 999 in
 sv <> 0)))

Proof Obligations (ambiguous variables)
● Operation calls, give ambiguous states (and Unchecked POs)
● "pure" operations okay, and "ext wr" clauses help
● Note: returned values are always ambiguous

state Sigma of
 s : nat
end

op(z:nat) r:real ==
(
 op2(z);
 -- s := 999
 return 1/s -- PO#1
);

op2(a:nat) ==
(
 ...
 s := f(a);
 ...
)

Proof Obligation 1: (Unchecked)
(forall z:nat, mk_Sigma(s):Sigma &
 (-- Ambiguous operation call to op2, affects (s)? at 8:5
 s <> 0))

Proof Obligation 1: (Unproved)
(forall z:nat, mk_Sigma(s):Sigma &
 (-- Ambiguous operation call to op2, affects (s)? at 8:5
 (let s : nat = 999 in <-- NOTE
 (-- Resolved ambiguity (s) at 9:5
 s <> 0))))

Proof Obligations (atomic updates)
● Atomic statements assign to variables simultaneously
● Any state invariant is only checked at the end
● Note the mk_Sigma! maximal type used in the check

state Sigma of
 sv : real
 xv : real
inv s == s.sv <> s.xv
end

op(a:nat) ==
(
 atomic -- PO#1
 (
 sv := xv;
 xv := sv
)
);

Proof Obligation 1: (Unproved)
(forall a:nat, mk_Sigma(sv, xv):Sigma &
 (let $atomic1 : real = xv in
 (let $atomic2 : real = sv in
 (let sv : real = $atomic1 in
 (let xv : real = $atomic2 in
 let s = mk_Sigma!(sv, xv) in ((s.sv) <> (s.xv)))))))

Proof Obligations (postconditions)
● Postconditions can refer to RESULT and "old" state
● Old state saved at the start; renamed to use "$" rather than "~"
● Return statements create RESULT if necessary

state Sigma of
 sv : real
 xv : real
end

op: nat ==> real
op(a) ==
(
 sv := a + 1;
 xv := sv + a;
 return xv
)
post RESULT > xv~ + sv~;

Proof Obligation 1: (Unproved)
(forall a:nat, mk_Sigma(sv, xv):Sigma &
 (let xv$ = xv, sv$ = sv in <-- Old state
 (let sv : nat = (a + 1) in
 (let xv : nat = (sv + a) in
 (let RESULT = xv in <-- Return xv
 (RESULT > (xv$ + sv$)))))))

Proof Obligations (loops)
● Loops can have @LoopInvarant(exp) annotations
● Inline functions help, but still difficult with more complex cases

state Sigma of
 s : seq of int
end

op(data:seq of int) ==
(
 dcl count : int := 0;
 s := data;

 -- @LoopInvariant(count + len s = len data);
 while s <> [] do
 (
 s := tl s;
 count := count + 1
)

 -- Here, invariant holds and s = []
 ...
);

Proof Obligation 1: (Unproved)
(forall data:seq of int, mk_Sigma(s):Sigma &
 let body: seq of int * int +> seq of int * int
 body(s, count) ==
 (let s : seq of int = (tl s) in
 (let count : int = (count + 1) in
 mk_(s, count))),

 invariant: seq of int * int * seq of int +> bool
 invariant(s, count, data) ==
 ((count + (len s)) = (len data)),

 loop: seq of int * int * seq of int +> bool
 loop(s, count, data) ==
 s <> [] =>
 invariant(s, count, data) and
 let mk_(s, count) = body(s, count) in
 invariant(s, count, data)
 and loop(s, count, data)
 in
 (let count : int = 0 in
 (let s : seq of int = data in
 (loop(s, count, data)))))

Proof Obligations (limitations (1/2))
● This is VDM-SL mainly (can cope with simple VDM++)

○ forall z:nat, obj_A(sv |-> sv):A & pre_op(z, new A(sv)) => ??
○ How to construct "new" state for pre_op?
○ What about static instance variables? Threads/sync?? Bus/CPUs???
○ So complex VDM++/RT cases marked as "Unchecked"

● Operation calls assumed to make everything ambiguous
○ Unless they are "pure" or intra-module with "ext wr" clauses
○ Eliminating ambiguities needs multi-module, multi-state analysis
○ Operation calls can recurse, so need measures

● Cannot handle always, trap and tixe exception related statements
○ Not sure what conditions lead to exceptions (extra paths?)
○ Currently, related POs marked as "Unchecked"

● Variable hiding in the source specification can confuse POG
○ POG already detects some cases and marks POs as "Unchecked"
○ Detection is fairly easy; avoidance is harder

Proof Obligations (limitations (2/2))
● Loops need more work:

○ Loops with POs or alternative paths within the body?
○ Need @LoopTermination (like a measure)
○ Without a @LoopInvariant annotation:

■ Loops mark all updated variables as ambiguous
■ Any POs generated within the loop are "Unchecked"

● The POG itself should be verified:
○ Are POs complete (covering all obligations)?
○ Are POs correct (valid operation semantics for any path)?

● Future Work
○ Address these limitations!!

Proof Obligations (Try it out)
● The POG updates are in VDMJ on GitHub

○ See https://github.com/nickbattle/vdmj
○ Release page for 4.7.0-SNAPSHOT:

■ https://github.com/nickbattle/vdmj/releases/tag/4.7.0-1
■ Stable: packaging-4.7.0-SNAPSHOT-distribution.zip
■ Or use the VSIX: vdm-vscode-1.5.1-patch.vsix

Thank You!

https://www.google.com/url?q=https://github.com/nickbattle/vdmj&sa=D&source=editors&ust=1749627790697080&usg=AOvVaw0kVYaXjWj7HJII2m-NBg4c
https://www.google.com/url?q=https://github.com/nickbattle/vdmj/releases/tag/4.7.0-1&sa=D&source=editors&ust=1749627790697212&usg=AOvVaw2wgS0F-3seygIXF-ZC778j

